3. Synthèse.

Conditions	Intervalle de confiance d'une proportion.
	si échantillonnage sans remise et N relativement petit par rapport à
	$n \ (N < 20n)$:
Grand échantillon : $n \geqslant 30$	$\mathbb{E} \widetilde{\otimes} \ IC_{\alpha} = \left[\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n} \times \frac{N-n}{N-1}} \right. , \ \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n} \times \frac{N-n}{N-1}} \right]$
$n\hat{p} \geqslant 5$ $n(1-\hat{p}) \geqslant 5$	si échantillonnage avec remise ou N relativement grand par rapport à n $(N\geqslant 20n)$:
$n(1-\hat{p}) \geqslant 5$	$\mathbb{E} \ IC_{\alpha} = \left[\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \;,\; \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$

a. L'écart-type σ de la population est connu.

Conditions	Intervalle de confiance d'une moyenne où l'écart-type σ de la population est connu.
Grand échanti \parallel on : $n\geqslant 30$	si échantillonnage sans remise et N relativement petit par rapport à n $(N<20n)$: $\mathbb{E} IC_{\alpha} = \left[\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \; ; \; \overline{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$
	si échantillonnage avec remise ou N relativement grand par rapport à n $(N\geqslant 20n)$: $\mathbb{E} IC_{\alpha} = \left[\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \; ; \; \overline{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$

a. L'écart-type σ de la population est connu.

Condition	Intervalle de confiance d'une moyenne sur un petit échantillon où l'écart-type σ de la population est connu et X suit une loi normale.
n < 30	si échantillonnage sans remise et N relativement petit par rapport à n ($N<20n$): $\mathbb{F} IC_{\alpha} = \left[\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \; ; \; \overline{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$
	si échantillonnage avec remise ou N relativement grand par rapport à n $(N\geqslant 20n)$: $\mathbb{E} \ IC_{\alpha} = \left[\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \ ; \ \overline{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$

a. L'écart-type σ de la population est connu.

Conditions	Intervalle de confiance d'une moyenne sur un petit échantillon où l'écart-type σ de la population est connu et X suit une loi inconnue.
Petit échantillon : $n < 30$	si échantillonnage sans remise et N relativement petit par rapport à n ($N<20n$): $\mathbb{E} IC_{\alpha} = \left[\overline{x} - \frac{1}{\sqrt{\alpha}} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \; ; \; \overline{x} + \frac{1}{\sqrt{\alpha}} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$
	si échantillonnage avec remise ou N relativement grand par rapport à n $(N\geqslant 20n)$: $\mathbb{E} \ IC_{\alpha} = \left[\overline{x} - \frac{1}{\sqrt{\alpha}}\frac{\sigma}{\sqrt{n}} \ ; \ \overline{x} + \frac{1}{\sqrt{\alpha}}\frac{\sigma}{\sqrt{n}}\right]$

$$\underline{\text{b. L'\'ecart-type }\sigma\text{ de la population est inconnu}:}S_c^2=\frac{1}{n-1}\sum_{k=1}^n\left(x_k-\overline{x}\right)^2\text{ et }S_c^2=\frac{n}{n-1}S^2$$

Conditions	Intervalle de confiance d'une moyenne sur un grand échantillon où l'écart-type σ de la population est inconnu.
Grand échantillon : $n\geqslant 30$	si échantillonnage sans remise et N relativement petit par rapport à n ($N<20n$): $\mathbb{E} IC_{\alpha} = \left[\overline{x} - z_{\frac{\alpha}{2}} \frac{S_c}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \; ; \; \overline{x} + z_{\frac{\alpha}{2}} \frac{S_c}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$
	si échantillonnage avec remise ou N relativement grand par rapport à n $(N\geqslant 20n)$: $\mathbb{E} IC_{\alpha} = \left[\overline{x} - z_{\frac{\alpha}{2}} \frac{S_c}{\sqrt{n}} \; ; \; \overline{x} + z_{\frac{\alpha}{2}} \frac{S_c}{\sqrt{n}}\right]$

$$\underline{\text{b. L'\'ecart-type }\sigma\text{ de la population est inconnu}:}S_c^2=\frac{1}{n-1}\sum_{k=1}^n\left(x_k-\overline{x}\right)^2\text{ et }S_c^2=\frac{n}{n-1}S^2$$

Conditions	Intervalle de confiance d'une moyenne sur un petit échantillon où l'écart-type σ de la population est inconnu et X suit une loi normale.
Petit échantillon :	si échantillonnage sans remise et N relativement petit par rapport à n $(N < 20n)$
	$(N<20n): \\ \mathbb{E} \ IC_{\alpha} = \left[\overline{x} - t_{\frac{\alpha}{2},n-1} \frac{S_c}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \; ; \; \overline{x} + t_{\frac{\alpha}{2},n-1} \frac{S_c}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$
n < 30	si échantillonnage avec remise ou N relativement grand par rapport à n
	$(N\geqslant 20n): \\ \mathbb{E} \ IC_{\alpha} = \left[\overline{x} - t_{\frac{\alpha}{2}, n-1} \frac{S_c}{\sqrt{n}} \; ; \; \overline{x} + t_{\frac{\alpha}{2}, n-1} \frac{S_c}{\sqrt{n}}\right]$

$$\underline{\text{b. L'\'ecart-type }\sigma\text{ de la population est inconnu}:}S_c^2=\frac{1}{n-1}\sum_{k=1}^n\left(x_k-\overline{x}\right)^2\text{ et }S_c^2=\frac{n}{n-1}S^2$$

Conditions	Intervalle de confiance d'une moyenne sur un petit échantillon où l'écart-type σ de la population est inconnu et X suit une loi inconnue
	si échantillonnage sans remise et N relativement petit par rapport à n
	(N < 20n):
Petit échantillon :	$(N < 20n) : \mathbb{E} IC_{\alpha} = \left[\overline{x} - \frac{1}{\sqrt{\alpha}} \frac{S_c}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} ; \overline{x} + \frac{1}{\sqrt{\alpha}} \frac{S_c}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$
n < 30	si échantillonnage avec remise ou N relativement grand par rapport à n
	$(N\geqslant 20n)$:
	$(N \geqslant 20n)$: $\mathbb{E} IC_{\alpha} = \left[\overline{x} - \frac{1}{\sqrt{\alpha}} \frac{S_c}{\sqrt{n}} ; \overline{x} + \frac{1}{\sqrt{\alpha}} \frac{S_c}{\sqrt{n}} \right]$